

Agenda

Sustainability @ ELANTAS

Bio-based materials

ELANTAS Solutions

Future developments

Sustainability Strategy @ ELANTAS Europe

Bio-based Materials

Labelling

Process

Circular economy

- Introduce and extend the use of bio-based raw materials
- Reduce overall impact of chemicals labelling
- Promote the implementation of processes with lower energy consumption inhouse and at customer site
- Promote the concept of circular economy
- Long term research in the area of recycling

Sustainability Strategy @ ELANTAS Europe

Bio-based Materials

Labelling

Process

Circular economy

- Introduce and extend the use of bio-based raw materials
- Reduce overall impact of chemicals labelling
- Promote the implementation of processes with lower energy consumption inhouse and at customer site
- Promote the concept of circular economy
- Long term research in the area of recycling

Bio-based materials Definitions

Bio-based materials:

Organic material containing in whole or part carbon from biological sources

Carbon is present in the atmosphere as CO₂

Bio-based materials How to trace carbon from biological sources

Bio (carbon) content:

• The bio (carbon) content is based on the amount of biogenic carbon

Bio or Biobased (carbon) content (%) =
$$\frac{Bio (organic) carbon}{Total (organic) carbon} * 100$$

ASTM D 6866

Continuos scouting and testing of innovative raw materials prompted the creation of a bio-based product portfolio over the last years.

ELANTAS bio-based products retain the full performances of fossil-based materials while advancing sustainability.

Area	Process application	Status	Elan-tech® resin	Elan-tech [®] hardener	Bio- based content
Composite	Infusion	On the market	EC 157.1 BIO	W 154 BIO series	38 – 46
Composite	Lamination	On the market	EC 152 BIO	W 154 BIO series	28 - 34
Composite	RTM	On the market	EC 157.1 BIO	W 154 HR BIO	37 - 43
Adhesive	Structural	On the market	AS 74 BIO	AW 74 BIO	57 - 63
Adhesive	Multipurpose	Just developed	AS 64 BIO	AW 64 BIO	37 - 43
Composite	Pre-preg	On the market	ECM 182 BIO	W 752	7 - 13

Continuos scouting and testing of innovative raw materials prompted the creation of a bio-based product portfolio over the last years.

ELANTAS bio-based products retain the full performances of fossil-based materials while advancing sustainability.

Area	Process application	Status	Elan-tech® resin	Elan-tech [®] hardener	Bio- based content
Composite	Infusion	On the market	EC 157.1 BIO	W 154 BIO series	38 – 46

Bio-based epoxy systems for composites Infusion

Properties	Conditions	Test Method	EC 157.1 / W 152 MR	EC 157.1 BIO / W 154 BIO
Mix ratio by weight			100:30	100:30
Initial mixture viscosity [mPa· s]	25 °C	IO-10-50 (ISO 3219)	225 – 335	450 - 650
Pot life [min]	25 °C 50 mm - 200 ml	IO-10-53	45 – 55	50 - 60
Gel time [h]	25 °C, 1 mm	IO-10-88 (ASTM D 5895-03)	7,5 – 8,5	7 - 9
Hardness [Shore D/15]	24 h RT + 15 h 60 °C	IO-10-58 (ASTM D 2240)	85 - 89	81 - 85
Tg [°C]	24 h RT + 15 h 60 °C	IO-10-69 (ASTM D 3418)	76 - 82	77 - 83
¹⁴ C content of the system [%]		ASTM D 6866-22	na	40 - 45
Bio-based resin			X	\checkmark
Bio-based hardener			X	\checkmark

Bio-based epoxy systems for composites Infusion

Properties	Conditions	Test Method	EC 157.1 BIO / W 152 LR	EC 157.1 BIO / W 154 LR-HT BIO	EC 157.1 BIO / W 154 XXLR BIO
Mix ratio by weight			100:30	100:30	100:30
Initial mixture viscosity [mPa· s]	25 °C	IO-10-50 (ISO 3219)	350 - 550	400 - 600	250 - 350
Pot life [min]	25 °C 50 mm - 200 ml	IO-10-53	145 - 215	55 - 70	110 - 140
Gel time [h]	25 °C, 1 mm	IO-10-88 (ASTM D 5895-03)	15 - 17	8 - 10	15 - 17
Hardness [Shore D/15]	24 h RT + 15 h 60 °C	IO-10-58 (ASTM D 2240)	81 - 85	79 - 83	na
Tg [°C]	24 h RT + 15 h 60 °C	IO-10-69 (ASTM D 3418)	73 - 78	80 - 86	64 - 70
¹⁴ C content of the system [%]		ASTM D 6866-22	25 - 30	37 - 43	32 - 37
Bio-based resin			\checkmark	√	\checkmark
Bio-based hardener			X	✓	\checkmark

Bio-based epoxy systems for composites Infusion: mechanical properties

Mechanical properties of the bio-based systems are retained.

Bio-based epoxy systems for composites Infusion: natural fibres

We produced bio-composite panels using Elan-tech® EC 157.1 BIO – W 154 BIO as matrix.

As reinforcement, three different type of natural fibres were tested.

Natural fibres from BÜFA:

- Cellulose: twill 2x2, 509 g/m²
- Flax: twill 2x2, 400 g/m²

Natural fibres from BComp:

• Flax: Twill, 280 g/m²

Bio-based epoxy systems for composites Infusion: natural fibres

Cellulose is the most promising reinforcement fibre.

Continuos scouting and testing of innovative raw materials prompted the creation of a bio-based product portfolio over the last years.

ELANTAS bio-based products retain the full performances of fossil-based materials while advancing sustainability.

Area	Process application	Status	Elan-tech® resin	Elan-tech [®] hardener	Bio- based content
Composite					38 – 46
Composite	Lamination	On the market	EC 152 BIO	W 154 BIO series	28 - 34

Bio-based epoxy systems for composites Wet hand lay-up

Properties	Conditions	Test Method	EC 152 / W 152 XLR-HT	EC 152 BIO / W 152 XLR-HT	EC 152 / W 152 MR	EC 152 BIO / W 154 BIO
Mix ratio by weight			100:30	100:30	100:30	100:30
Initial mixture viscosity [mPa· s]	25 °C	IO-10-50 (ISO 3219)	400 – 500	400 - 600	600 – 900	700 - 900
Dat life for in 1	25 °C 50 mm - 200 ml	10 40 52	na	na	43 – 53	58 - 68
Pot life [min]	25 °C 80 mm – 500 ml	IO-10-53	130 - 155	135 – 145	na	na
Gel time [h]	25 °C, 1 mm	IO-10-88 (ASTM D 5895-03)	10,5 – 11,5	11,5 – 12,5	7,5 - 8,5	6 - 7
Hardness [Shore D/15]	24 h RT + 15 h 60 °C	IO-10-58 (ASTM D 2240)	82 - 86	82 - 86	85 – 89	82 - 86
Tg [°C]	24 h RT + 15 h 60 °C	IO-10-69 (ASTM D 3418)	83 - 88	85 - 91	85 - 91	86 - 92
¹⁴ C content of the system [%]		ASTM D 6866-22	-	≈20	-	28 - 34
Bio-based resin			X	\checkmark	X	\checkmark
Bio-based hardener			X	X	X	\checkmark

Continuos scouting and testing of innovative raw materials prompted the creation of a bio-based product portfolio over the last years.

ELANTAS bio-based products retain the full performances of fossil-based materials while advancing sustainability.

Area	Process application	Status	Elan-tech® resin	Elan-tech [®] hardener	Bio- based content
Composite					
Composite	Lamination	On the market	EC 152 BIO	W 154 BIO series	28 - 34
Composite	RTM	On the market	EC 157.1 BIO	W 154 HR BIO	37 - 43

Bio-based epoxy systems for composites RTM process

Properties	Conditions	Test Method	EC 157.1 / W 152.1 HR	EC 157.1 BIO / W 154 HR BIO
Mix ratio by weight			100:30	100:30
Initial mixture viscosity [mPa· s]	25 °C	IO-10-50 (ISO 3219)	200 - 400	400 - 600
Det life [maim]	25 °C 40 mm – 100 ml	IO-10-53	na	38 – 47
Pot life [min]	25 °C 50 mm - 200 ml		10 -14	na
Gel time [h]	25 °C, 1 mm	IO-10-88 (ASTM D 5895-03)	3 - 4	5 - 7
Tg [°C]	24 h RT + 15 h 60 °C	IO-10-69 (ASTM D 3418)	82 – 88 ¹	80 - 85
¹⁴ C content of the system [%]		ASTM D 6866-22		37 - 43
Bio-based resin			X	\checkmark
Bio-based hardener			X	\checkmark

Continuos scouting and testing of innovative raw materials prompted the creation of a bio-based product portfolio over the last years.

ELANTAS bio-based products retain the full performances of fossil-based materials while advancing sustainability.

Area	Process application	Status	Elan-tech® resin	Elan-tech® hardener	Bio- based content
Composite	Lamination	On the market	EC 152 BIO	W 154 BIO series	28 - 34
Adhesive	Structural	On the market	AS 74 BIO	AW 74 BIO	57 - 63

Strcutural bio-based adhesive Elan-tech® ADH 74.74 BIO

Performances aligned to our top seller ADH 891.892.

Typical properties	Test Method	ADH 891.892	ADH 74.74 BIO
Mix ratio by volume		100:50	100:50
Gel time, 1 mm, 25 °C [h]	IO-10-88 (ASTM D 5895-03)	3,5 – 4,5	4,5 – 5,5
Pot life, 40 mm, 100 ml [min]	IO-10-53	15 - 25	33 - 43
Tg (24 h RT) [°C]	IO-10-69 (ASTM D 3418)	52 - 58	45 - 50
Tg max (8h 80 °C) [°C]	IO-10-69 (ASTM D 3418)	82 - 88	91 - 97
¹⁴ C content of the system [%]	ASTM D 6866-22	0	Up to 60

- ✓ Bio-based resin and hardener
- ✓ Perfect rheology behaviour
- ✓ Good wettability
- ✓ Black coloured for carbon look applications
- ✓ High thermal resistance
- Structural mechanical properties
- ✓ High ¹⁴C content
- ✓ CMR Free

Strcutural bio-based adhesive Elan-tech® ADH 74.74 BIO

Excellent LSS performances on both Aluminum and Stainless steel.

Available in cartridges made from up to 100% recycled material.

Continuos scouting and testing of innovative raw materials prompted the creation of a bio-based product portfolio over the last years.

ELANTAS bio-based products retain the full performances of fossil-based materials while advancing sustainability.

Area	Process application	Status	Elan-tech® resin	Elan-tech [®] hardener	Bio- based content
Composite					38 – 46
Composite	Lamination	On the market	EC 152 BIO	W 154 BIO series	28 - 34
Composite	Pre-preg	On the market	ECM 182 BIO	W 752	7 - 13

Pre-preg system Elan-tech® ECM 182 BIO

Our bio-based hot-melt system for pre-preg manufacturing.

Key benefits

- 1K or 2K to adjust the reactivity and product shelf-life.
- Solvent-free.
- Colorless.
- Excellent stability.
- Succesfully tested with carbon, flax, glass fibres.
- Fast curing at temperature below 150 °C.
- Tg above 100 °C.

Applications: automotive, marine, hydrogen storage, aerospace, sports and leisure.

Exemplary automotive component

Presented at JEC World 2024

Pre-preg system Elan-tech® ECM 182 BIO

Properties	Test Method	ECM 182 BIO / W 752
Mix ratio by weight		100:5
Minimum mixture viscosity [mPa· s]	IO-10-95 (ISO 3219)	200 – 300
Temperature at minimum viscosity [°C]	IO-10-95 (ISO 3219)	117 °C
Tg [°C] see suggested cycle	IO-10-69 (ASTM D 3418)	108 - 114
Enthalpy ΔH [J/g]	IO-10-69 (ASTM D 3418)	360 - 380

Suggested curing cycle:

- 1. Apply full vacuum (1 bar)
- 2. Apply 6 bar gauge autoclave pressure or 2 bar for sandwich panels
- 3. Reduce the vacuum when the autoclave pressure reaches approximately 1 bar gauge
- 4. Heat at 2÷3 °C/min to 110°C
- 5. Hold at 110°C for 20 min
- 6. Heat at 2÷3 °C/min to 135°C
- 7. Hold at 135°C for 60 min
- 8. Cool at 2÷3 °C/min to 60°C
- 9. Cool at 3÷5 °C/min

Easy to process with impregnation machines thanks to its viscosity and stability up to 70 °C.

Future developments Your opinion matters!

Concept in development: flame-retardant epoxy resin for Prepreg.

Context: growing demand for flame-retardant composite materials in sectors such as aerospace, rail and construction.

Technical features:

- flame-retardant properties.
- low smoke and toxicity emissions.
- compatibility with carbon and glass fibers.
- processability and properties similar to our current prepreg systems.

Call to Action:

- Would you be interested in testing a prototype?
- What characteristics are most important to you?

Thank you for your attention

